Influence of Passive Flow-Control Devices on the Pressure Fluctuations at Wing-Body Junction Flows

Author:

Ölçmen Semih M.1,Simpson Roger L.2

Affiliation:

1. The University of Alabama, Aerospace Engineering and Mechanics Department, P.O. Box 870280, Tuscaloosa, AL 35487-0280

2. Virginia Polytechnic Institute and State University, Aerospace and Ocean Engineering Department, 215 Randolph Hall, Blacksburg, VA 24061

Abstract

The effectiveness of passive flow-control devices in eliminating high surface rms pressure fluctuations at the junction of several idealized wing/body junction flows was studied. Wall-pressure fluctuation measurements were made using microphones along the line of symmetry at the wing/body junction of six different wing shapes. The wings were mounted on the wind tunnel floor at a zero degree angle-of-attack. The six wing shapes tested were: a 3:2 semi-elliptical-nosed NACA 0020 tailed generic body shape (Rood wing), a parallel center-body model, a tear-drop model, a Sandia 1850 model, and NACA 0015 and NACA 0012 airfoil shapes. Eight different fence configurations were tested with the Rood wing. The two double-fence configurations were found to be the most effective in reducing the pressure fluctuations. Two of the single fence types were nearly as effective and were simpler to manufacture and test. For this reason one of these single fence types was selected for testing with all of the other wing models. The best fence flow-control devices were found to reduce rms wall-pressure fluctuations by at least 61% relative to the baseline cases.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. The Turbulent Horseshoe Vortex;Baker;J. Wind. Eng. Ind. Aerodyn.

2. Evidence of Large Scale Time Dependent Flow in the Wingwall Interaction Wake;Rood

3. Aspects of Turbulent Boundary Layer Separation;Simpson;Prog. Aerosp. Sci.

4. Junction Flows;Simpson;Annu. Rev. Fluid Mech.

5. Time-Dependent and Time-Averaged Turbulence Structure Near the Nose of a Wing-Body Junction;Devenport;J. Fluid Mech.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3