Affiliation:
1. University of Bath, Bath, UK
Abstract
This article reports on experimental investigations of a switched inertance hydraulic system (SIHS), which is designed to control the flow and pressure of a hydraulic supply. The switched system basically consists of a switching element, an inductance and a capacitance. Two basic modes, a flow booster and a pressure booster, can be configured in a three-port SIHS. It is capable of boosting the pressure or flow with a corresponding drop in flow or pressure respectively. This technique makes use of the inherent reactive behaviour of hydraulic components. A high-speed rotary valve is used to provide sufficiently high switching frequency and minimise the pressure and flow loss at the valve orifice, and a small diameter tube is used to provide an inductive effect. In this article, a flow booster is introduced as the switched system for investigation. The measured steady state and dynamic characteristics of the rotary valve are presented, and the dynamics characteristics of the flow booster are investigated in terms of pressure loss, flow loss and system efficiency. The speed of sound is measured by analysis of the measured dynamic pressures in the inertance tube. A detailed analytical model of a SIHS is applied to analyse the experimental results. Experimental results on a flow booster rig show a very promising performance for the SIHS.
Publisher
American Society of Mechanical Engineers
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献