Experimental Investigation of a Switched Inertance Hydraulic System

Author:

Pan Min1,Robertson James1,Johnston Nigel1,Plummer Andrew1,Hillis Andrew1

Affiliation:

1. University of Bath, Bath, UK

Abstract

This article reports on experimental investigations of a switched inertance hydraulic system (SIHS), which is designed to control the flow and pressure of a hydraulic supply. The switched system basically consists of a switching element, an inductance and a capacitance. Two basic modes, a flow booster and a pressure booster, can be configured in a three-port SIHS. It is capable of boosting the pressure or flow with a corresponding drop in flow or pressure respectively. This technique makes use of the inherent reactive behaviour of hydraulic components. A high-speed rotary valve is used to provide sufficiently high switching frequency and minimise the pressure and flow loss at the valve orifice, and a small diameter tube is used to provide an inductive effect. In this article, a flow booster is introduced as the switched system for investigation. The measured steady state and dynamic characteristics of the rotary valve are presented, and the dynamics characteristics of the flow booster are investigated in terms of pressure loss, flow loss and system efficiency. The speed of sound is measured by analysis of the measured dynamic pressures in the inertance tube. A detailed analytical model of a SIHS is applied to analyse the experimental results. Experimental results on a flow booster rig show a very promising performance for the SIHS.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3