Performance Monitoring of Gas Turbines for Failure Prevention

Author:

Dundas Robert E.1,Sullivan Daniel A.2,Abegg Frank3

Affiliation:

1. Factory Mutual Engineering & Research, Norwood, MA

2. Technical Innovations, Inc., Sandwich, MA

3. Golden Valley Electric Association, Inc., Fairbanks, AK

Abstract

The concept of performance monitoring for prevention of certain serious failures in gas turbines is described. The use of compressor mapping as the key to avoiding surge is developed, and an example is presented showing how the compressor in a steam-injected gas turbine can be much closer to surge in one of two nearly-identical operating points on a steam-injection control envelope than the compressor in the other. The technique of monitoring blade-path temperature spread in the exhaust of a gas turbine is then described, and examples of its value in preventing combustor burnout and turbine blade failures in high-frequency fatigue are given. Next, a concept of diagnosing internal deterioration by recognizing patterns of deviation of operating parameters from baseline data is described, and illustrated for a single-shaft generator-drive gas turbine. Finally, the use of a modern computer-controlled data acquisition system to perform the above monitoring functions in real time is demonstrated.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Creep Phenomenon and Its Model in Aircraft Engines;International Journal of Aerospace Engineering;2023-05-29

2. Limitations on the computational analysis of creep failure models: A review;Engineering Failure Analysis;2022-04

3. Gas Turbine Performance Deterioration and Compressor Washing;Forsthoffer's Component Condition Monitoring;2019

4. Uncertainty Reduction in Gas Turbine Performance Diagnostics by Accounting for Humidity Effects;Journal of Engineering for Gas Turbines and Power;2002-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3