Extremum Seeking Based Control Strategy for a Chilled-Water Plant With Parallel Chillers

Author:

Mu Baojie1,Li Yaoyu1,Salsbury Timothy I.2,House John M.2

Affiliation:

1. The University of Texas at Dallas, Richardson, TX

2. Johnson Controls, Inc., Milwaukee, WI

Abstract

Chilled-water plants with multiple chillers are the backbone of ventilation and air conditioning (VAC) systems for commercial buildings. A penalty function based multivariate extremum seeking control (ESC) strategy is proposed in this paper for maximizing the energy efficiency in real time for a variable primary flow (VPF) chilled-water plant with parallel chillers. The proposed ESC algorithm takes the total power consumption (chiller compressors + cooling tower fan + condenser water pumps + penalty terms if inputs saturation occurs) as feedback, and tower fan air flow, condenser water flows and evaporator leaving chilled-water temperature setpoint as plant inputs (ESC outputs). A band-pass filter array is used in place of the conventional high-pass filter at the plant output so as to reduce the cross-channel interference. Chiller sequencing is also enabled with input saturation related signals. A Modelica based dynamic simulation model is developed for a chilled-water plant with two parallel chillers, one cooling tower, one air-handling unit and one zone. Simulation results under several testing conditions validate the effectiveness of the proposed model-free control strategy, as well as the significant energy saving.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Occupant-centric Control of Building Systems based on Real-time Optimization by Extremum Seeking;2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe);2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3