Crystal Plasticity Modeling of Laser Peening Effects on Tensile and High Cycle Fatigue Properties of 2024-T351 Aluminum Alloy

Author:

Toursangsaraki Maziar1,Wang Huamiao1,Hu Yongxiang1,Karthik Dhandapanik1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract This study aims to model the effects of multiple laser peening (LP) on the mechanical properties of AA2024-T351 by including the material microstructure and residual stresses using the crystal plasticity finite element method (CPFEM). In this approach, the LP-induced compressive residual stress distribution is modeled through the insertion of the Eigenstrains as a function of depth, which is calibrated by the X-ray measured residual stresses. The simulated enhancement in the tensile properties after LP, caused by the formation of a near-surface work-hardened layer, fits the experimentally obtained tensile curves. The model calculated fatigue indicator parameters (FIPs) under the following cyclic loading application show a decrease in the near-surface driving forces for the crystal slip deformation after the insertion of the Eigenstrains. This leads to a higher high cycle fatigue (HCF) resistance and the possible transformation of sensitive locations for fatigue failure further to the depth after LP. Experimental observations on the enhancement in the HCF life, along with the relocation of fatigue crack nucleation sites further to the depth, reveal the improvement in the HCF properties due to the LP process and validate the numerical approach.

Funder

National Natural Science Foundation of China

Shanghai Shuguang Program

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3