Mitigation of Current-Driven, Vortex-Induced Vibrations of a Spar Platform via “SMART” Thrusters

Author:

Fischer F. Joseph1,Liapis Stergios I.2,Kallinderis Yannis

Affiliation:

1. Office of Corporate Relations, MIT, Cambridge, MA (formerly, Shell International E&P Technology, Houston, TX)

2. Offshore Structures, Shell E&P Technology Company, Houston, TX

Abstract

The possibility of using active-control technology to mitigate long-period (100–300 s) motions of spar platforms was investigated. In particular, the technical feasibility and cost-effectiveness of using a thruster-based active-control system was examined. Only vortex-induced vibrations (VIV) of a moored spar were considered for this study, although it is believed that similar active-control systems can contend equally well with low-frequency wave-drift and wind-induced motions. VIV has been selected for this demonstration due to the considerable attention it has received for spars, because of the high cost for passive VIV-mitigation means. The investigation employed numerical simulations of the hydrodynamics around the spar in two and three dimensions. In particular, for this study, Navier-Stokes methods were used to compute the strongly nonlinear interactions between the current-flow field and the spar hull. The fluid forces (hull-integrated pressures) were then used to compute the unsteady motions of the moored spar. The effect of the motion-controlling thrusters was included as an additional external force—that also varies with time. Of the several different control strategies that were examined, it was found that the most effective one is “D-Control” wherein thruster forces are proportional to spar velocities. Using such control, spar motions can be kept below 35% of the spar diameter, whereas uncontrolled responses were computed to be as high as 80% of the spar diameter. Similar uncontrolled motions have actually been observed in current-tank model tests of spars. As part of this study, discussions were held with engineers from three different thruster companies to ascertain the number and type of thrusters that would be required to achieve desirable VIV mitigation—given the computed thruster-forces, and to provide prudent reliability. Associated costs were also very much of interest. For the spar system examined here, which is representative of those introduced into or being considered for the Gulf of Mexico, it was found that the cost of the thrusters and their electric motors is around $8 million—a cost that is significantly less than that estimated for passive VIV-control devices such as helical strakes, or discontinuous hull geometries. Furthermore, the proposed thruster system could also be employed to contend with (to mitigate) other undesirable, large-amplitude, near-resonant spar motions, e.g., low-frequency drift, for which there are no alternative remedies at present.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3