Affiliation:
1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712
2. Department of Engineering Mechanics, United States Air Force Academy
Abstract
Electromechanical products and systems are often designed to transform or reconfigure between two or more states. Each state is customized to fulfill a specific set of functions, and the transformation between these multiple states allows for greater functionality and the elimination of many trade-offs between conflicting needs. Empirical examination of existing transforming systems and their similarities has led to a foundational transformation design theory, with meta-analogies and guidelines that explain how transformation processes occur, when they are useful, and how the designer can ensure their maximum benefit. The foundation of these principles and guidelines forms a meta-analogical framework for designing transformers and transformational systems. This paper presents a history of the development of transformational design theory, including the relationship of the research to case-based reasoning in other fields. Ideation methods are presented that specifically exploit the meta-analogies, i.e., categories of transformers. An example design problem is considered to illustrate the potential utility of this design-by-analogy approach.
Subject
Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献