Three-Dimensional Gas Turbine Combustor Emissions Modeling

Author:

Rizk N. K.1,Mongia H. C.1

Affiliation:

1. Allison Gas Turbine Division, General Motors Corporation, Indianapolis, IN 46206

Abstract

An emission model that combines the analytical capabilities of three-dimensional combustor performance codes with mathematical expressions based on detailed chemical kinetic scheme is formulated. The expressions provide the trends of formation and/or the consumption of Nox, CO, and UHC in various regions of the combustor utilizing the details of the flow and combustion characteristics given by the three-dimensional analysis. By this means, the optimization of the combustor design to minimize pollutant formation and maintain satisfactory stability and performance could be achieved. The developed model was used to calculate the emissions produced by several engine combustors that varied significantly in design and concept, and operated on both conventional and high-density fuels. The calculated emissions agreed well with the measurements. The model also provided insight into the regions in the combustor where excessive emissions were formed, and helped to understand the influence of the combustor details and air admissions arrangement on reaction rates and pollutant concentrations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermoenvironomic evaluation of simple, intercooled, STIG, and ISTIG cycles;International Journal of Energy Research;2018-06-11

2. Evaluation of CFD Best Practices for Combustor Design: PART II - Reacting Flows;51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2013-01-05

3. On Initiating 3rd Generation of Correlations for Gaseous Emissions of Aero-Propulsion Engines;48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition;2010-01-04

4. Predictions of Flow and Heat Transfer in Low Emission Combustors;Heat Transfer Engineering;2008-04

5. Recent Progress in Comprehensive Modeling of Gas Turbine Combustion;46th AIAA Aerospace Sciences Meeting and Exhibit;2008-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3