Predictions of a Turbulent Separated Flow Using Commercial CFD Codes

Author:

Iaccarino Gianluca1

Affiliation:

1. Center for Turbulence Research, Stanford University, Stanford, CA 94305-3030

Abstract

Numerical simulations of the turbulent flow in an asymmetric two-dimensional diffuser are carried out using three commercial CFD codes: CFX, Fluent, and Star-CD. A low-Reynolds number k-ε model with damping functions and the four-equation v′2¯−f model are used; the first one is available as a standard feature in all the codes, the v′2¯−f model was implemented using the User Defined Routines. The flow features a large recirculating zone due to the adverse pressure gradient in the diffuser; the v′2¯−f predictions agree very well with the experiments both for the mean velocity and the turbulent kinetic energy. The length of the separation bubble is also computed within 6 percent of the measured value. The k-ε calculations do not show any recirculation and the agreement with the measurements is very poor. The three codes employed show very similar characteristics in terms of convergence and accuracy; in particular, the results obtained using the v′2¯−f are consistent in all the codes, while appreciable differences are obtained when the k-ε is employed.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3