Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention

Author:

Abbott D. R.1

Affiliation:

1. General Electric Company, Lynn, MA

Abstract

Fatigue cracking of an aircraft engine labyrinth seal occurred during pre-flight factory testing. Testing in a static rig revealed that the seal could be aeroelastically excited by the labyrinth leakage air flow. An earlier analytical model used for stability analysis was extended to account for the effect of acoustic natural frequency on the aeroelastic stability. The new model predicted that the ratio of acoustic and mechanical natural frequencies was of vital importance in determining if the nature of the pressure fluctuations within the labyrinth seal teeth provided either positive or negative aerodynamic damping to the seal. The analytical results were verified by further rig testing and also by correlation with test results for several other seals tested as part of a labyrinth seal technology program. A mechanical friction damper sleeve was designed to suppress the aeroelastic instability. The damper sleeve was tested in a rotating rig to evaluate its damping characteristics. The aircraft engine was qualified with the newly designed damper which has demonstrated its effectiveness for eight years of service and half a million hours of operation without incident.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3