Dusty Shock Waves

Author:

Igra O.1,Ben-Dor G.1

Affiliation:

1. Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

The flow field developed behind shock waves in a pure gaseous medium is well known and documented in all gasdynamics textbooks. This is not the case when the gaseous medium is seeded with small solid particles. The present review treats various cases of shock waves propagation into a gas-dust suspension (dusty shock waves). It starts (chapter 1) with basic definitions of two-phase (gas-dust) suspensions and presents a general form of the conservation equations which govern dusty shock wave flows. In chapter two, the simple case of a steady flow of a suspension consisting of an inert dust and a perfect gas through a normal shock wave is studied. The effect of the dust presence, and of changes in its physical parameters, on the post-shock wave flow are discussed. Obviously, these discussions are limited to relatively weak shock waves (perfect gas). For stronger normal shock waves, the assumption of a perfect gas no longer holds. Therefore, in chapter three, real gas effects (ionization or dissociation) are taken into account when calculating the post-shock flow field. In chapter four, the dust chemistry is included and its effects on the post-shock flow is studied. In order to emphasize the role played by the dust chemistry, a comparison between a reactive and a similar inert suspension is presented. The case of an oblique shock wave in a dusty gas is discussed in chapter five. In all cases treated in chapters two to five the flow is steady; however, in many engineering applications this is not the case. In reality, even for the simplest case of a one-dimensional flow (normal shock wave propagation into quiescent suspension—the dusty shock tube) the shock wave attenuates and the flow field behind it is not steady. This case is treated in chapter six. The cases treated in chapters two to six deal with planar shock waves. However, all explosion generated shock waves in the atmosphere are spherical. Due to the engineering importance of this case, the post-shock flow for spherical shock waves in a dusty gas is studied, in detail, in chapter seven. It is shown in the present review that the dust presence has significant effects on the post-shock flow field. In all cases studied, a relaxation zone is developed behind the shock wave front. Throughout this zone momentum and energy exchange between the two phases of the suspension takes place. Through these interactions a new state of equilibrium is reached. The extent of the relaxation zone depends upon the dust loading ratio, the dust particle diameter, its specific heat capacity, and the dust spatial density. Due to the complexity of conducting experimental investigations with dusty shock waves, the number of published experimental results is very limited. As a result most of the present review contains numerical studies. However, in the few cases where experimental data are available, (e.g. dusty shock tube flow; see chapter six) a comparison between the numerical and experimental results is given.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3