Combined-Hole Film Cooling Designs Based on the Construction of Antikidney Vortex Structure: A Review

Author:

Zhu Rui1,Zhang Guohua1,Li Shulei2,Xie Gongnan2

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical, University in Shenzhen, Shenzhen 518057, China

Abstract

Abstract Film cooling is one of the most efficient and widely used cooling methods for high-temperature components. The interaction between the film cooling jet and main flow creates the counter-rotating vortex pair (CRVP), which enhances the mixing between coolant and hot stream and lifts the coolant film off the protected surface. The desire to overcome the unfavorable effects of CRVP and thus efficiently improve cooling effectiveness promotes various new combined-hole designs for film cooling. In this review paper, a summary of previous progress on film cooling and a special focus on recent literature related to the combined-hole film cooling designs with less difficulty in machining are provided. The underlying mechanisms of the enhancement in cooling effectiveness and film coverage due to antikidney vortex structure by combined holes are analyzed. Some perspectives on future prospects are finally addressed.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3