Swirling Flame Combustion of Heavy Fuel Oil: Effect of Fuel Sulfur Content

Author:

Pei Xinyan1,Abdul Jameel Abdul Gani2,Chen Chaoqin3,AlGhamdi Ibrahim A.4,AlAhmadi Kamal4,AlBarakati Eid4,Saxena Saumitra3,Roberts William L.3

Affiliation:

1. Institute for Aero Engine, Tsinghua University, Beijing 100084, China

2. Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

3. King Abdullah University of Science and Technology, Clean Combustion Research Center, Thuwal 23955, Saudi Arabia

4. Research and Development, Saudi Electricity Company, Riyadh 11416, Saudi Arabia

Abstract

Abstract In the present work, an experimental investigation on the effect of sulfur content in heavy fuel oil (HFO) on the gaseous emissions under swirling flame conditions was carried out. The sulfur content in HFO was varied by blending with ultra-low sulfur diesel and four fuel samples containing 3.15, 2.80, 1.97, and 0.52% sulfur (by mass) were prepared. Pure asphaltenes were added to the blends to ensure that the asphaltene content in the fuel remained the same. The fuels were then fired in a high-swirl stabilized, turbulent spray flame. The combustion performance of the fuels was evaluated by measuring flame temperature distribution, gaseous emissions (SOx, NOx, CO, CO2, and flue gas pH), and particulate matter (PM) emissions (morphology, composition, and pH). The results showed a significant reduction in the SO2 emissions and acidity of the flue gas when the sulfur content in the fuel was reduced, as expected. The reduction was more than would be expected based on sulfur content, however. For example, the flue gas SO2 concentration reduced from 620 ppm to 48 ppm when the sulfur content in the fuel was reduced from 3.15 to 0.52% (by mass). Sulfur balance calculations indicate that nearly 97.5% of the sulfur in the fuel translates into gaseous emissions and the remaining 2.5% appears in PM emissions. Ninety-five percent of the gaseous sulfur emissions are SO2, whereas the rest appears as SO3. Varying the sulfur content in the fuel did not have a major impact on the flame temperature distribution or NOx emissions. The morphologies and the size distribution of the PM also did not change significantly with the sulfur content as the asphaltenes content of the fuels remained the same.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3