Energy Release Protection for Pressurized Systems. Part II: Review of Studies Into Impact/Terminal Ballistics

Author:

Brown Samuel J.1

Affiliation:

1. Quest Engineering Development Corporation, PO Box 1275 Crosby, Houston TX 77532

Abstract

In order to assess whether or not there is a need for protection against the failure of a pressure system, the engineer must evaluate the hazards associated with rupture. The hazards are divided into two categories: (a) force/displacement and (b) degenerative. Force/displacement is classified into (1) kinetic energy associated with the atmosphere: blast, (2) kinetic energy of objects (fragmentation and impact of missiles), and (3) kinetic energy associated with foundations: soil foundation motion. The first article of this series [Energy release protection from pressurized systems: Part I Review of studies into blast and fragmentation, Appl Mech Rev38 (Dec), 1625–1651 (1985)] has set the stage for this paper, which reviews the studies into predicting the performance (mechanics) of a receptor (target, containment, barricade, shelter) that is impacted by a missile. The study into the prediction of target missile performance or terminal ballistics has occupied interests of man since the development of a projectile as a weapon. One of the earliest publications of terminal ballistics is reported by Robins (1742). A number of experimental studies during the 1800s are reported by Holie (1950). These early experiments set the pattern for the reliance on experimental programs to define semiempirical formula to predict missile–target responses (such as penetration, perforation, spalling, and scabbing) into the 20th century. This is due to the fact that theoretically derived equations to predict missile target performance have enjoyed only limited success because of the complexity of the problems to be solved. Numerical methods essentially had to wait for the development of the high speed digital computers in the early 1960s. Historically the finite difference methods have received the earliest use in simulating impact. They tend to be more computationally cost effective than finite element programs. However, because of the generality of the finite element method to idealize structures geometrically for a considerable range of mechanics problems, it has received the greater attention of research and development over the last two decades and is capable of solving wave propagation, nonlinear material, and nonlinear large deformation problems. The computer codes developed to solve impact problems are generally characterized as either Lagrangian or Eulerian. In this paper, a brief discussion will be provided covering the development of target/missile formulas, associated experimental programs and numerical methods.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3