On the Wear Mechanisms and Cutting Performance of Silicon Carbide Whisker-Reinforced Alumina

Author:

Thangaraj A. R.1,Weinmann K. J.1

Affiliation:

1. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931

Abstract

The objective of this research was to study the types of wear suffered by silicon carbide whisker-reinforced aluminum oxide inserts in the machining of Inconel 718. Further, it was desired to study the effects of tool wear and cutting conditions on cutting forces, workpiece dimensional accuracy, and surface finish. Machining tests were conducted using 12.7 mm diameter round inserts at cutting speeds ranging from 6.0 to 13.0 m/s. The feed rates ranged from 0.13 to 0.51 mm/rev and two depths of cut of 0.76 and 1.27 mm were used. Tool failure in the cutting of the relatively soft (220 HB) nickel-based superalloy was due to excessive wear. Flank wear played a larger role at the lower speeds, but depth-of-cut notch wear was significant at the higher speeds. Abrasion, adhesion, and chipping were found to be the dominant wear mechanisms. The results of this study are presented and discussed in this paper.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3