A Fault Detection Framework Based on Data-Driven Digital Shadows

Author:

Michalski Miguel Angelo de Carvalho1,Melani Arthur Henrique de Andrade1,da Silva Renan Favarão1,de Souza Gilberto Francisco Martha1

Affiliation:

1. Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School of the University of São Paulo , Av. Prof. Mello Moraes 2231—Cidade Universitária, São Paulo, SP 05508-030, Brazil

Abstract

Abstract The popularization of Industry 4.0 and its technological pillars has allowed prognostics and health management (PHM) strategies to be applied in complex systems to optimize their performance and extend their useful life by taking advantage of a digitalized, integrated environment. Due to this context, the use of digital twins and digital shadows, which are virtual representations of physical systems that provide real-time monitoring and analysis of the health and performance of the system, has been increasingly used in the application of fault detection, a key component of PHM. Taking that into consideration, this work proposes a framework for fault detection in engineering systems based on the construction and application of a digital shadow. This digital shadow is based on a digital model composed of a system of equations and a continuous, real-time communication process with a supervisory control and data acquisition (SCADA) system. The digital model is generated using monitoring data from the system under study. The proposed method was applied in two case studies, one based on synthetic data and another that uses a simulated database of an operational generating unit of a hydro-electric power plant. The method, in both case studies, was able to detect faults accurately and effectively. Besides, the method provides by-products that can be used in the future in other applications, helping with the PHM in other aspects.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3