Affiliation:
1. Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208
Abstract
Suitable porous electrode design may play a significant role in the performance enhancement of solid oxide fuel cells (SOFCs). In this paper a genetic algorithm optimization method is employed to design electrodes based on a 2D planar SOFC model development. The objective is to find suitable porosities and particle sizes distributions for both anode and cathode electrodes so that the cell performance can be maximized. The results indicate that the optimized heterogeneous morphology may better improve SOFC performance than the homogeneous counterpart, particularly under relatively high current density conditions. The optimization results are dependent on the operating conditions. The effects of inlet mass flow rates and fuel compositions are investigated. The proposed approach provides a systematical method for electrode microstructure designs of high performance SOFCs.
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献