Simultaneous Turbine Speed Regulation and Fuel Cell Airflow Tracking of a SOFC/GT Hybrid Plant With the Use of Airflow Bypass Valves

Author:

Tsai Alex1,Tucker David2,Clippinger David3

Affiliation:

1. Assistant Professor United States Coast Guard Academy Department of Engineering, McAllister Hall, 27 Mohegan Ave., New London, CT 06320

2. Research Scientist Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Rd., Morgantown, WV 26505

3. Assistant Professor United States Coast Guard Academy Department of Engineering, McAllister Hall, 27 Mohegan Ave., New London, CT 05320

Abstract

This paper studies a novel control methodology aimed at regulating and tracking turbo machinery synchronous speed and fuel cell mass flow rate of a SOFC/GT hardware simulation facility with the sole use of airflow bypass valves. The hybrid facility under consideration consists of a 120 kW auxiliary power unit gas turbine coupled to a 300 kW SOFC hardware simulator. The hybrid simulator allows testing of a wide variety of fuel cell models under a hardware-in-the-loop configuration. Small changes in fuel cell cathode airflow have shown to have a large impact on system performance. Without simultaneous control of turbine speed via load or auxiliary fuel, fuel cell airflow tracking requires an alternate actuator methodology. The use of bypass valves to control mass flow rate and decouple turbine speed allows for a greater flexibility and feasibility of implementation at the larger scale, where synchronous speeds are required. This work utilizes empirically derived transfer functions (TF) as the system model and applies a fuzzy logic (FL) control algorithm that can be easily incorporated to nonlinear models of direct fired recuperated hybrid plants having similar configurations. This methodology is tested on a SIMULINK/matlab platform for various perturbations of turbine load and fuel cell heat exhaust.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference22 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multicoordination Control Strategy Performance in Hybrid Power Systems;Journal of Electrochemical Energy Conversion and Storage;2018-04-11

2. Experimental Emulation Facilities;Hybrid Systems Based on Solid Oxide Fuel Cells;2017-06-30

3. SOFC/mGT Coupling;Hybrid Systems Based on Solid Oxide Fuel Cells;2017-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3