The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics

Author:

Lauß Thomas12,Oberpeilsteiner Stefan12,Steiner Wolfgang3,Nachbagauer Karin3

Affiliation:

1. University of Applied Sciences Upper Austria, Stelzhamerstrae 23, Wels 4600, Austria;

2. Institute of Mechanics and Mechatronics, Vienna University of Technology, Getreidemarkt 9/E325, Wien 1060, Austria e-mail:

3. University of Applied Sciences Upper Austria, Stelzhamerstrae 23, Wels 4600, Austria e-mail:

Abstract

The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference20 articles.

1. Lauss, T., Leitner, P., Oberpeilsteiner, S., and Steiner, W., 2015, “Energy Optimal Manipulation of an Industrial Robot,” ECCOMASThematic Conference on Multibody Dynamics, Barcelona, Catalonia, Spain, June 29–July 2, pp. 789–798.http://congress.cimne.com/multibody2015/admin/files/fileabstract/a84.pdf

2. Design Sensitivity Analysis of Large-Scaled Constrained Dynamic Mechanical Systems;J. Mech., Transm., Autom. Des.,1984

3. Analyzing and Optimizing Multibody Systems;Mech. Struct. Mach.,1992

4. Eberhard, P., 1996, “Adjoint Variable Method for Sensitivity Analysis of Multibody Systems Interpreted as a Continuous, Hybrid Form of Automatic Differentiation,” 2nd International Workshop on Computational Differentiation, Santa Fe, NM, SIAM, Philadelphia, PA, pp. 319–328.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3