Thermal Behavior Analysis of Wire Mini Heat Pipe

Author:

Vieira de Paiva Kleber1,Barbosa Henriques Mantelli Marcia1,Kessler Slongo Leonardo1

Affiliation:

1. Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil

Abstract

This work presents a theoretical and experimental analysis of a copper mini heat pipe (MHP), fabricated from a sandwich formed between cylindrical wires and flat plates, which are welded by means of diffusion process. The edges formed between the wires and the plates provide the working fluid capillary pressure necessary to overcome all the pressure losses. Two different experimental set ups were developed: one for test in gravity (laboratory) and other for microgravity conditions (International Space Station—ISS). The main difference between them lies in the condenser section. In the laboratory, cooling water was used to remove heat from the mini heat pipe, while at the ISS, fins and air fan were employed. In gravity, three different working fluids were tested: water, acetone, and methanol, while, for the experiments at the ISS, just water was used. A model was developed to predict the maximum heat transfer capacity of the device. In comparison to the literature models, the main difference of the present model is the variation of contact angle to adjust the mathematical model. Therefore, the main contributions of the present work are development of wire plate mini heat pipe fabrication methodology using diffusion welding, improvement of the analytical model used to predict the maximum heat transfer capacity of the device, determination of the present technology optimum design parameters, and test data obtained under microgravity conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference17 articles.

1. Principles and Prospects for Micro Heat Pipes;Cotter

2. Analysis of Wire-Bonded Micro Heat Pipe;Wang;J. Thermophys. Heat Transfer

3. Investigation of a Wire Plate Micro Heat Pipe Array;Launay;Int. J. Therm. Sci.

4. A One-Dimensional Model of a Micro Heat Pipe During Steady State Operation;Longtin;ASME J. Heat Transfer

5. Computational Analysis of Fluid Flow and Heat Transfer in Wire-Sandwiched Micro Heat Pipes;Rag;J. Thermophys. Heat Transfer

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3