Pipe Deformation During a Running Shear Fracture in Line Pipe

Author:

Ives K. D.1,Shoemaker A. K.1,McCartney R. F.1

Affiliation:

1. U. S. Steel Research Laboratory, Monroeville, Pa.

Abstract

Under sponsorship of the American Iron and Steel Institute, U. S. Steel Research has been conducting full-scale burst tests of large-diameter submerged-arc-welded line pipe to determine the toughness required to arrest running shear fractures for different design conditions. As part of that program, the pipe were instrumented with crack detectors, strain gages, and pressure transducers to determine the crack velocities and the actual pipe deformation and strain fields associated with the shear fracture propagating along the top of the pipe. This paper summarizes the test data that document the manner in which the pipe deforms during this type of crack propagation. The data show that for a propagating shear fracture, each of four different locations along the pipe length (relative to the crack tip) has a distinctive type of pipe deformation. For a location many pipe diameters ahead of the crack tip, the circumferential strain first decreases because of flexural waves associated with the initiation process and then continues to decrease in proportion to the local gas decompression; however, the longitudinal strain continuously increases because of a longitudinal “tongue” of tensile straining on the top of the pipe caused by pressure-induced opening of the flaps of the pipe on both sides of the fracture behind the crack tip. At a distance about two diameters ahead of the crack tip, the pipe cross section becomes oval, and in the presence of this deformation the strain field is no longer determined by the local pressure; in fact, the circumferential strain is near zero at a distance two diameters ahead of the crack. The oval pipe shape ahead of the crack tip is caused by the venting of the gas behind the crack tip which creates a downward reactive force on the bottom portion of the pipe. Opening at the crack tip is the result of tensile straining caused by circumferential and radial displacement of the flaps behind the crack tip. Thus it is believed that the action of the pipe-wall flaps behind the crack tip provides the primary force driving the crack down the top of the pipe.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3