Modal Techniques for Remote Identification of Nonlinear Reactions at Gap-Supported Tubes Under Turbulent Excitation

Author:

Delaune Xavier1,Antunes José2,Debut Vincent2,Piteau Philippe1,Borsoi Laurent1

Affiliation:

1. Laboratoire d’Études de Dynamique, Commissariat à l’Énergie Atomique, CEA, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette, France

2. Applied Dynamics Laboratory, Instituto Tecnológico e Nuclear, ITN/ADL, Estrada Nacional 10, 2686 Sacavem Codex, Portugal

Abstract

Predictive computation of the nonlinear dynamical responses of gap-supported tubes subjected to flow excitation has been the subject of very active research. Nevertheless, experimental results are still very important, for validation of the theoretical predictions as well as for asserting the integrity of field components. Because carefully instrumented test tubes and tube-supports are seldom possible, due to space limitations and to the severe environment conditions, there is a need for robust techniques capable of extracting, from the actual vibratory response data, information that is relevant for asserting the components integrity. The dynamical contact/impact (vibro-impact) forces are of paramount significance, as are the tube/support gaps. Following our previous studies in this area using wave-propagation techniques (De Araújo, Antunes, and Piteau, 1998, “Remote Identification of Impact Forces on Loosely Supported Tubes: Part 1—Basic Theory and Experiments,” J. Sound Vib., 215, pp. 1015–1041; Antunes, Paulino, and Piteau, 1998, “Remote Identification of Impact Forces on Loosely Supported Tubes: Part 2—Complex Vibro-Impact Motions,” J. Sound Vib., 215, pp. 1043–1064; Paulino, Antunes, and Izquierdo, 1999, “Remote Identification of Impact Forces on Loosely Supported Tubes: Analysis of Multi-Supported Systems,” ASME J. Pressure Vessel Technol., 121, pp. 61–70), we apply modal methods in the present paper for extracting such information. The dynamical support forces, as well as the vibratory responses at the support locations, are identified from one or several vibratory response measurements at remote transducers, from which the support gaps can be inferred. As for most inverse problems, the identification results may prove quite sensitive to noise and modeling errors. Therefore, topics discussed in the paper include regularization techniques to mitigate the effects of nonmeasured noise perturbations. In particular, a method is proposed to improve the identification of contact forces at the supports when the system is excited by an unknown distributed turbulence force field. The extensive identification results presented are based on realistic numerical simulations of gap-supported tubes subjected to flow turbulence excitation. We can thus confront the identified dynamical support contact forces and vibratory motions at the gap-support with the actual values stemming from the original nonlinear computations. The important topic of dealing with the imperfect knowledge of the modal parameters used to build the inverted transfer functions is thoroughly addressed elsewhere (Debut, Delaune, and Antunes, 2009, “Identification of Nonlinear Interaction Forces Acting on Continuous Systems Using Remote Measurements of the Vibratory Responses,” Proceedings of the Seventh EUROMECH Solids Mechanics Conference (ESMC2009), Lisbon, Portugal, Sept. 7–11). Nevertheless, identifications are performed in this paper based on both the exact modes and also on randomly perturbed modal parameters. Our results show that, for the system addressed here, deterioration of the identifications is moderate when realistic errors are introduced in the modal parameters. In all cases, the identified results compare reasonably well with the real contact forces and motions at the gap-supports.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference35 articles.

1. Factors Associated With Support Forces Due to Heat Exchanger Tube Vibration Contact;Rogers;Nucl. Eng. Des.

2. Overview of Numerical Methods for Predicting Flow-Induced Vibrations;Axisa;ASME J. Pressure Vessel Technol.

3. Coulomb Friction Modelling in Numerical Simulations of Vibration and Wear Work Rate of Multi-Span Heat-Exchangers;Antunes;J. Fluids Struct.

4. Random Excitation of Heat-Exchanger Tubes by Cross-Flow;Axisa;J. Fluids Struct.

5. Vibro-Impact Behaviour of Fluid-Elastically Unstable Heat Exchanger Tubes With Support Clearances;Fricker

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3