Affiliation:
1. Mechanical Engineering Department, United States Naval Academy, Annapolis, MD 21402
2. Naval Architecture and Ocean Engineering Department, United States Naval Academy, Annapolis, MD 21402
Abstract
Film cooling flows subject to periodic wakes were studied experimentally. The wakes were generated with a spoked wheel upstream of a flat plate. Cases with a single row of cylindrical film cooling holes inclined at 35deg to the surface were considered at blowing ratios of 0.25, 0.50, and 1.0 with a steady freestream and with wake Strouhal numbers of 0.15, 0.30, and 0.60. Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold-wire) anemometry. Hot-wire anemometry was used for velocity measurements. The local film cooling effectiveness and heat transfer coefficient were determined from the measured temperatures. Phase locked flow temperature fields were determined from cold-wire surveys. Wakes decreased the film cooling effectiveness for blowing ratios of 0.25 and 0.50 when compared to steady freestream cases. In contrast, effectiveness increased with Strouhal number for the 1.0 blowing ratio cases, as the wakes helped mitigate the effects of jet lift-off. Heat transfer coefficients increased with wake passing frequency, with nearly the same percentage increase in cases with and without film cooling. The time resolved flow measurements show the interaction of the wakes with the film cooling jets. Near-wall flow measurements are used to infer the instantaneous film cooling effectiveness as it changes during the wake passing cycle.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献