Initial Development of Turbulent, Compressible Free Shear Layers

Author:

Hill W. G.1,Page R. H.2

Affiliation:

1. Research Department, Grumman Aircraft Engineering Corporation, Bethpage, N. Y.

2. Department of Mechanical and Aerospace Engineering, Rutgers—The State University, New Brunswick, N. J.

Abstract

The mixing zone between a two dimensional free stream and a fluid essentially at rest is studied experimentally and analytically. Turbulent shear layer velocity profiles were measured behind rearward facing steps and over cavities for equivalent free stream Mach numbers from 2.1 to 3.7, utilizing a wind tunnel wall boundary layer. Approximate methods are derived for calculating the shear layer change from an attached turbulent boundary layer to a fully developed free shear layer. A linearized equation of motion is used for the early stages of development, whereas the downstream stages are calculated by using a similarity profile. Both methods permit rapid calculations of the shear layer profile at any location along the mixing zone, without the necessity of determining the intermediate profiles. Comparison of the approximate methods with these experiments, and with experiments of other investigators, shows good agreement over the subsonic to supersonic Mach number range examined.

Publisher

ASME International

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3