Fatigue Reliability of Wind Turbine Fleets: The Effect of Uncertainty on Projected Costs

Author:

Veers P. S.1

Affiliation:

1. Sandia National Laboratories, Wind Energy Technology Department, MS 0708, Albuquerque, NM 87185-0708

Abstract

The cost of repairing or replacing failed components depends on the number and timing of failures. Although the total probability of individual component failure is sometimes interpreted as the percentage of components likely to fail, this perception is often far from correct. Different amounts of common versus independent uncertainty can cause different numbers of components to be at risk of failure. The FAROW tool for fatigue and reliability analysis of wind turbines makes it possible for the first time to conduct a detailed economic analysis of the effects of uncertainty on fleet costs. By dividing the uncertainty into common and independent parts, the percentage of components expected to fail in each year of operation is estimated. Costs are assigned to the failures and the yearly costs and present values are computed. If replacement cost is simply a constant multiple of the number of failures, the average, or expected cost is the same as would be calculated by multiplying by the probability of individual component failure. However, more complicated cost models require a breakdown of how many components are likely to fail. This breakdown enables the calculation of costs associated with various probability of occurrence levels, illustrating the variability in projected costs. Estimating how the numbers of components expected to fail evolves over time is also useful in calculating the present value of projected costs and in understanding the nature of the financial risk.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wind Farm Layout Sensitivity Analysis and Probabilistic Model of Landowner Decisions;Journal of Energy Resources Technology;2017-02-24

2. Fatigue loading of wind turbines;Wind Energy Systems;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3