Affiliation:
1. Dept. of Mechanical Engineering, Washington State University, Pullman, WA 99164
2. Dept. of Mechanical Engineering, University of Kentucky, Lexington, KY 40506
Abstract
The rates of evaporation of water from a horizontal water surface into a turbulent stream of hot air or superheated steam at different free-stream mass fluxes and modulated temperatures were experimentally measured. The pressure of the free stream was atmospheric. For steam, the experimental results are mostly within 10 percent of the available analytical results. Two previous experimental results are about 50 percent and 300 percent higher than the analytical results. For air, the measured evaporation rates are consistently higher than the analytical results. An estimate of the conduction heat transfer from the walls of the test section to water was made for several air tests. If the conduction heat transfer were subtracted from the total heat transfer, the measured evaporation rates are actually quite close to the analytical results. The present experiment also confirms the existence of a temperature, called the inversion temperature, below which the water evaporation rate is higher in air than in steam, but above which the opposite is true. The inversion temperature is in good agreement with the analytical prediction. The results for both air and superheated steam show that a certain scaled expression for the evaporation rate is independent of the free-steam mass flux, also in agreement with the analytical prediction.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献