Computer Numerical Control Grinding Wheel Pose for Thinned/Notched Drill Points With Specifiable Secondary Cutting Edge and Characteristic Angles

Author:

Dain Lin Psang1

Affiliation:

1. Professor Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan e-mail:

Abstract

Researchers commonly develop notched drill points with secondary cutting edges that have unusual specifications; however, mathematical models cannot comprehensively specify these thinned/notched drill points. In an earlier work (Lin, P. D., and Tzeng, C. S., 2007, “New Method for Determination of the Pose of the Grinding Wheel for Thinning Drill Points,” Int. J. Mach. Tools Manuf., 47(15), pp. 2218–2229), precise mathematical modeling for drill design and one-wheel grinding of ISO-standard drills with linear secondary cutting edges was presented. That model is expanded herein to drill points with a specifiable secondary cutting edge and characteristic angle distribution. Optionally, the entire cutting edge (primary, secondary, and chisel edges) can be provided with C1 continuity to eliminate stress concentration points. The mathematical background and modeling are summarized in this study. Experimental drills are produced and tested for verification and demonstration. The presented modeling technique allows subsequent researchers to exactly duplicate the drills, including the thinning/notching drill points, a capability that was previously unavailable. This system is useful for improved drill CAD and CNC software for the design, manufacture, reconditioning, and research of novel point design.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Method for Determination of Wheel Location in Machining Helical Flute of End Mill;Journal of Manufacturing Science and Engineering;2016-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3