Aerodynamic Design and Testing of Three Low Solidity Steam Turbine Nozzle Cascades

Author:

Song Bo1,Ng Wing F.1,Cotroneo Joseph A.2,Hofer Douglas C.2,Siden Gunnar3

Affiliation:

1. Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

2. GE Energy, 1 River Road, Schenectady, NY 12345

3. GE Energy, 300 Garlington Road, Greenville, SC 29602

Abstract

Three sets of low solidity steam turbine nozzle cascades were designed and tested. The objective was to reduce cost through a reduction in parts count while maintaining or improving performance. The primary application is for steam turbine high pressure sections where Mach numbers are subsonic and high levels of unguided turning can be tolerated. The base line design A has a ratio of pitch to axial chord of 1.2. This is the pitch diameter section of a 50% reaction stage that has been verified by multistage testing on steam to have a high level of efficiency. Designs B and C have ratios of pitch to axial chord of 1.5 and 1.8, respectively. All three designs satisfy the same inlet and exit vector diagrams. Analytical surface Mach number distributions and boundary layer transition predictions are presented. Extensive cascade test measurements were carried out for a broad incidence range from −60to+35deg. At each incidence, four outlet Mach numbers were tested, ranging from 0.2 to 0.8, with the corresponding Reynolds number variation from 1.8×105 to 9.0×105. Experimental results of loss coefficient and blade surface Mach number are presented and compared for the three cascades. The experimental results have demonstrated low losses over the tested Mach number range for a wide range of incidence from −45to15deg. Designs B and C have lower profile losses than design A. The associated flow physics is interpreted using the results of wake profile, blade surface Mach number distribution, and blade surface oil flow visualization, with the emphasis placed on the loss mechanisms for different flow conditions and the loss reduction mechanism with lower solidity. The effect of the higher profile loading of the lower solidity designs on increased end wall losses induced by increased secondary flow, especially on low aspect ratio designs, is the subject of ongoing studies.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blade solidity optimization of axial turbine in compressed air energy storage system;Journal of Energy Storage;2023-11

2. A linear cascade tunnel for flow investigations of steam turbine rotor tip blades in subsonic nucleating flows;SN Applied Sciences;2021-02

3. Advances in axial turbine blade profile aerodynamics;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3