Leveraging Task Modularity in Reinforcement Learning for Adaptable Industry 4.0 Automation

Author:

Chen Qiliang1,Heydari Babak1,Moghaddam Mohsen1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115

Abstract

Abstract The vision of Industry 4.0 is to materialize the notion of a lot-size of one through enhanced adaptability and resilience of manufacturing and logistics operations to dynamic changes or deviations on the shop floor. This article is motivated by the lack of formal methods for efficient transfer of knowledge across different yet interrelated tasks, with special reference to collaborative robotic operations such as material handling, machine tending, assembly, and inspection. We propose a meta reinforcement learning framework to enhance the adaptability of collaborative robots to new tasks through task modularization and efficient transfer of policies from previously learned task modules. Our experiments on the OpenAI Gym Robotics environments Reach, Push, and Pick-and-Place indicate an average 75% reduction in the number of iterations to achieve a 60% success rate as well as a 50%-80% improvement in task completion efficiency, compared to the deep deterministic policy gradient (DDPG) algorithm as a baseline. The significant improvements achieved in the jumpstart and asymptotic performance of the robot create new opportunities for investigating the current limitations of learning robots in industrial settings, associated with sample inefficiency and specialization on one task through modularization and transfer learning.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference92 articles.

1. Industry 4.0;Lasi;Business Inform. Syst. Eng.,2014

2. Cyber-Physical Systems in Manufacturing;Monostori;CIRP Ann. - Manufact. Technol.,2016

3. Reference Architectures for Smart Manufacturing: A Critical Review;Moghaddam;J. Manuf. Syst.,2018

4. One Step Towards An Industry 4.0 Component;Luder,2017

5. The Collaborative Factory of the Future;Moghaddam;Int. J. Computer Int. Manufact.,2017

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3