An Integrated Framework for Optimal Design of Complex Mechanical Products

Author:

Xue Deyi1,Imaniyan David1

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Abstract The presently achieved research results are not effective for the design of complex mechanical products when various methods and tools in different schemes have to be employed at different design stages. A new integrated framework for the optimal design of complex mechanical products is introduced in this research considering modeling, simulation, and optimization aspects. First, a hybrid scheme is developed for the integrated modeling of complex mechanical products. In this hybrid scheme, descriptions of a generic product are modeled by an and-or tree. Feasible design candidates are created from the and-or tree through tree-based search. Geometric descriptions in a design candidate are associated with a computer-aided design (CAD) system. Second, a hybrid simulation method is developed for the evaluation of different product aspects with different simulation tools which are integrated through the hybrid modeling scheme. Simulations with geometric descriptions are conducted by analysis functions of the CAD system. Simulations with non-geometric descriptions are conducted by the knowledge-based systems. Third, a hybrid optimization method is developed to identify the optimal design of the complex mechanical product. For each design candidate, parameter optimization is conducted to obtain the optimal parameter values. The optimal design solution is identified from all design candidates through configuration optimization. A prototype system has been implemented for conceptual design and detailed design of complex mechanical products.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference35 articles.

1. Product Modeling From Knowledge, Distributed Computing and Lifecycle Perspectives: A Literature Review;Lyu;Comput. Ind.,2017

2. A Framework for Optimal Design of Complex Products;Xue,2018

3. Principles of Systems Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3