A Numerical Method for Estimating the Temperature Distributions in Extrusion Through Conical Dies

Author:

Altan T.1,Kobayashi S.2

Affiliation:

1. Plastics Department, E. I. du Pont de Nemours & Company, Wilmington, Del.

2. University of California, Berkeley, Calif.

Abstract

A numerical method was developed to predict the local temperatures in the billet and in the tooling before the extrusion starts. The method was further extended for calculating the nonsteady-state temperature distributions during extrusion. The necessary velocity, strain rate, and strain fields were obtained from a visioplaslicity experiment. Heat generation and conduction were approximated in two consecutive steps taking place during equal time increments Δt. The temperature dependencies of the flow stress and of the thermal constants of the billet and the tool materials were taken into account, and the entire procedure was programmed in FORTRAN IV to facilitate its general use for analyzing extrusions with different extrusion ratios, materials, die angles, ram speeds, and friction conditions.

Publisher

ASME International

Subject

General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opportunities and Challenges in Metal Forming for Lightweighting: Review and Future Work;Journal of Manufacturing Science and Engineering;2020-09-28

2. Scrap production of extruded aluminum alloys by direct extrusion;Procedia Manufacturing;2019

3. Tribology of Extrusion;Friction, Lubrication, and Wear Technology;2017-12-31

4. Hot extrusion process modeling using a coupled upper bound-finite element method;Journal of Manufacturing Processes;2014-04

5. Thermo‐mechanical analysis of cold extrusion process using stream function and finite element methods;Multidiscipline Modeling in Materials and Structures;2013-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3