Surface Roughness Effects on Flow Boiling in Microchannels

Author:

Jones Benjamin J.1,Garimella Suresh V.1

Affiliation:

1. NSF Cooling Technologies Research Center, School of Mechanical Engineering, and Birck Nanotechnology Center, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088

Abstract

The influence of surface roughness on flow boiling heat transfer and pressure drop in microchannels is experimentally explored. The microchannel heat sink employed in the study consists of ten parallel, 25.4 mm long channels with nominal dimensions of 500×500 μm2. The channels were produced by saw-cutting. Two of the test piece surfaces were roughened to varying degrees with electrical discharge machining (EDM). The roughness average Ra varied from 1.4 μm for the as-fabricated, saw-cut surface to 3.9 μm and 6.7 μm for the two roughened EDM surfaces. Deionized water was used as the working fluid. The experiments indicate that the surface roughness has little influence on boiling incipience and only a minor impact on saturated boiling heat transfer coefficients at lower heat fluxes. For wall heat fluxes above 1500 kW/m2, the two EDM surfaces (3.9 μm and 6.7 μm) have similar heat transfer coefficients that were 20–35% higher than those measured for the saw-cut surface (1.4 μm). A modified Bertsch et al. [2009, “A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels,” Int. J. Heat Mass Transfer, 52, pp. 2110–2118] correlation was found to provide acceptable predictions of the flow boiling heat transfer coefficient over the range of conditions tested. Analysis of the pressure drop measurements indicates that only the roughest surface (6.7 μm) has an adverse effect on the two-phase pressure drop.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trefftz functions methods in analysis of the effect of enhanced heated surface on FC-72 flow boiling in minichannels;Applied Thermal Engineering;2024-01

2. Numerical simulation of flow boiling heat transfer in microchannel with surface roughness;International Journal of Heat and Mass Transfer;2023-05

3. Efficacy of refrigerants in thin metallic coated wickless heat pipes – A comparative study;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-04-18

4. Impact of inlet subcooling on flow boiling in microchannels;EXP THERM FLUID SCI;2023

5. Impact of inlet subcooling on flow boiling in microchannels;Experimental Thermal and Fluid Science;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3