Affiliation:
1. NSF Cooling Technologies Research Center, School of Mechanical Engineering, and Birck Nanotechnology Center, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088
Abstract
The influence of surface roughness on flow boiling heat transfer and pressure drop in microchannels is experimentally explored. The microchannel heat sink employed in the study consists of ten parallel, 25.4 mm long channels with nominal dimensions of 500×500 μm2. The channels were produced by saw-cutting. Two of the test piece surfaces were roughened to varying degrees with electrical discharge machining (EDM). The roughness average Ra varied from 1.4 μm for the as-fabricated, saw-cut surface to 3.9 μm and 6.7 μm for the two roughened EDM surfaces. Deionized water was used as the working fluid. The experiments indicate that the surface roughness has little influence on boiling incipience and only a minor impact on saturated boiling heat transfer coefficients at lower heat fluxes. For wall heat fluxes above 1500 kW/m2, the two EDM surfaces (3.9 μm and 6.7 μm) have similar heat transfer coefficients that were 20–35% higher than those measured for the saw-cut surface (1.4 μm). A modified Bertsch et al. [2009, “A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels,” Int. J. Heat Mass Transfer, 52, pp. 2110–2118] correlation was found to provide acceptable predictions of the flow boiling heat transfer coefficient over the range of conditions tested. Analysis of the pressure drop measurements indicates that only the roughest surface (6.7 μm) has an adverse effect on the two-phase pressure drop.
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献