Physics Based Control Oriented Model for HCCI Combustion Timing

Author:

Shahbakhti Mahdi1,Koch Charles Robert1

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8, Canada

Abstract

Incorporating homogeneous charge compression ignition (HCCI) into combustion engines for better fuel economy and lower emission requires understanding the dynamics influencing the combustion timing in HCCI engines. A control oriented model to dynamically predict cycle-to-cycle combustion timing of a HCCI engine is developed. The model is designed to work with parameters that are easy to measure and to have low computation time with sufficient accuracy for control applications. The model is a full-cycle model and consists of a residual gas model, a modified knock integral model, fuel burn rate model, and thermodynamic models. In addition, semi-empirical correlations are used to predict the gas exchange process, generated work and completeness of combustion. The developed model incorporates the thermal coupling dynamics caused by the residual gases from one cycle to the next cycle. The model is parameterized by over 5700 simulations from a detailed thermokinetic model and experimental data obtained from a single-cylinder engine. Cross-validation of the model with both steady-state and transient HCCI experiments for four different primary reference fuel blends is detailed. With seven model inputs, the combustion timing of over 150 different HCCI points is predicted to within an average error of less than 1.5 deg of crank angle. A narrow window of combustion timing is found to provide stable and efficient HCCI operation.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3