Design and Performance of a Motor-Driven Mechanism to Conduct Experiments With the Human Index Finger

Author:

Kuo Pei-Hsin1,Hayes Jerod2,Deshpande Ashish D.1

Affiliation:

1. ReNeu Robotics Laboratory, Mechanical Engineering, The University of Texas, Austin, TX 78712 e-mail:

2. Mechanical Engineering, University of Maine, Orono, ME 04469 e-mail:

Abstract

Passive properties of the human hands, defined by the joint stiffness and damping, play an important role in hand biomechanics and neuromuscular control. Introduction of mechanical element that generates humanlike passive properties in a robotic form may lead to improved grasping and manipulation abilities of the next generation of robotic hands. This paper presents a novel mechanism, which is designed to conduct experiments with the human subjects in order to develop mathematical models of the passive properties at the metacarpophalangeal (MCP) joint. We designed a motor-driven system that integrates with a noninvasive and infrared motion capture system, and can control and record the MCP joint angle, angular velocity, and passive forces of the MCP joint in the index finger. A total of 19 subjects participated in the experiments. The modular and adjustable design was suitable for variant sizes of the human hands. Sample results of the viscoelastic moment, hysteresis loop, and complex module are presented in the paper. We also carried out an error analysis and a statistical test to validate the reliability and repeatability of the mechanism. The results show that the mechanism can precisely collect kinematic and kinetic data during static and dynamic tests, thus allowing us to further understand the insights of passive properties of the human hand joints. The viscoelastic behavior of the MCP joint showed a nonlinear dependency on the frequency. It implies that the elastic and viscous component of the hand joint coordinate to adapt to the external loading based on the applied frequency. The findings derived from the experiments with the mechanism can provide important guidelines for design of humanlike compliance of the robotic hands.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-Like Hand Mechanism;Humanoid Robotics: A Reference;2018-10-10

2. Humanlike Hand Mechanism;Humanoid Robotics: A Reference;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3