On Generalized Jacobi–Bernstein Basis Transformation: Application of Multidegree Reduction of Bézier Curves and Surfaces

Author:

Doha E. H.1,Bhrawy A. H.23,Saker M. A.4

Affiliation:

1. Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt e-mail:

2. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt e-mail:

4. Department of Basic Science, Institute of Information Technology, Modern Academy, Cairo 11931, Egypt e-mail:

Abstract

This paper formulates a new explicit expression for the generalized Jacobi polynomials (GJPs) in terms of Bernstein basis. We also establish and prove the basis transformation between the GJPs basis and Bernstein basis and vice versa. This transformation embeds the perfect least-square performance of the GJPs with the geometrical insight of the Bernstein form. Moreover, the GJPs with indexes corresponding to the number of endpoint constraints are the natural basis functions for least-square approximation of Bézier curves and surfaces. Application to multidegree reduction (MDR) of Bézier curves and surfaces in computer aided geometric design (CAGD) is given.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference38 articles.

1. A Spectral TAU Algorithm Based on Jacobi Operational Matrix for Numerical Solution of Time Fractional Diffusion-Wave Equations;J. Comput. Phys.

2. Jacobi-Gauss-Lobatto Collocation Method for the Numerical Solution of 1 + 1 Nonlinear Schrodinger Equations;J. Comput. Phys.,2014

3. A New Jacobi Rational-Gauss Collocation Method for Numerical Solution of Generalized Pantograph Equations;Appl. Numer. Math.,2014

4. Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials;J. Sci. Comput.,2006

5. Generalized Jacobi Rational Spectral Method and Its Applications;J. Sci. Comput.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite element application of ERBS extraction;Journal of Computational and Applied Mathematics;2020-12

2. Note on multi-degree reduction of Bézier curves via modified Jacobi–Bernstein basis transformation;Journal of Computational and Applied Mathematics;2017-05

3. Modified Jacobi–Bernstein basis transformation and its application to multi-degree reduction of Bézier curves;Journal of Computational and Applied Mathematics;2016-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3