A Novel Redacted Extended Kalman Filter and Fuzzy Logic-Based Technique for Measurement of State-of-Charge of Lithium-Ion Battery

Author:

Bera Chinmay1,Mandal Rajib2,Kumar Amitesh1

Affiliation:

1. National Institute of Technology Nextgen Adaptive Systems Group, Department of Electrical Engineering, , Patna 800005 , India

2. National Institute of Technology Department of Electrical Engineering, , Patna 800005 , India

Abstract

Abstract This paper presents a novel technique based on an adaptive approach of redacted extended Kalman filter (REKF) assimilating fuzzy logic features for measuring the state-of-charge (SoC) of lithium-ion batteries. Accurately determining SoC is crucial for maximizing battery capacity and performance. However, existing extended Kalman filtering algorithms suffer from issues such as inadequate noise resistance and noise sensitivity, as well as difficulties in selecting the forgetting factor. The aforementioned REKF technique addresses these challenges adequately for accurate measurement of SoC. The proposed method involves establishing a Thevenin equivalent circuit model and using the recursive least squares with forgetting factor (RLSFF) to identify model parameters. Furthermore, an evaluation factor is established, and to adaptively adjust the value of the forgetting factor, fuzzy control is utilized, which enhances the extended Kalman filtering algorithm with noise adaptive algorithm features to estimate the SoC accurately. This modified algorithm considers the identification results from the parameter estimation step and executes them circularly to achieve precise SoC estimation. Results demonstrate that the proposed method has excellent robustness and estimation accuracy compared to other filtering algorithms, even under variable working conditions, including a wide range of state-of-health (SOH) and temperature. The proposed method is expected to enhance the performance of battery management systems for various applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3