Affiliation:
1. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
Abstract
Thermal stresses in layered electronic assemblies are one of the causes of the mechanical failure of electronic packages. A simple but accurate method of estimating these thermal stresses is needed for the design of these packages. A simple approach based on beam theory exists, but it suffers from nonequilibrium of the peeling stress distribution. An improved method that overcomes this drawback is proposed here. For layered electronics with thin adhesives, simple analytical expressions are obtained for interfacial shear stress and peeling stress, as well as for other stress components. The finite element method is used to verify these solutions. It shows excellent agreement between the finite element results and these simple solutions, especially when the moduli of adhesive layers are significantly lower than the moduli of the other layers. This method provides an accurate estimate of thermal stresses for use in package design involving thin and compliant interface or adhesive layers.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献