Analysis of Loss of Heat Sink for ITER Divertor Cooling System Using Modified RELAP/SCDAPSIM/MOD 4.0

Author:

Saraswat S. P.1,Ray D.2,Munshi P.2,Allison C.3

Affiliation:

1. Nuclear Engineering and Technology Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India e-mails: ;

2. Nuclear Engineering and Technology Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India e-mail:

3. Innovative Systems Software, Idaho Falls, ID 83406 e-mail:

Abstract

The present work includes thermal hydraulic modeling and analysis of loss of heat sink (LOHS) accident for the ITER divertor cooling system. The analysis is done for the new design of full tungsten divertor. The new design is also analyzed for different local heat loads ranging from 10 MW/m2 to 20 MW/m2 (while maintaining the total heat load 200 MW) under the steady-state fluid conditions. The LOHS event is selected since divertor is the most sensitive component to loss or reduction in coolability of divertor primary heat transport system (DV-PHTS) loop as it receives large heat flux from plasma. The main objective of this analysis is to find margins to unwanted conditions like overstress temperatures of structure and elevated water level in the pressurizer. The analysis is done by modified thermal hydraulic code RELAP/SCDAPSIM/MOD 4.0. The results obtained are compared with the results of old divertor design which uses carbon fiber composite (CFC) layer to show that how the new design of divertor behaves compared to the older design under the accident scenario. A detailed model of DV-PHTS loop and its ancillary system is presented. The model includes promotional integral differential (PID) controller for controlling the pressurizer heater and spray system. A detailed pump model is also included in the present analysis which was previously used as a time-dependent junction. The analysis shows that under the accident scenario, (a) the divertor structure temperature at the critical sites (inner vertical target (IVT) and outer vertical target (OVT)) is always within the design limit and does not affect the structural integrity of the divertor. (b) The water level in the pressurizer increases moderately and finely controlled by the PID controller, and pressurizer safety valve does not open.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3