Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

Author:

Sabharwall Piyush1,Clark Denis E.,Mizia Ronald E.,Glazoff Michael V.,McKellar Michael G.2

Affiliation:

1. e-mail:

2. Idaho National Laboratory, P.O. Box 1625, MS 3860, Idaho Falls, ID 83415-3860

Abstract

The goal of next generation reactors is to increase energy efficiency in the production of electricity and provide high-temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required flow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design specifications for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference41 articles.

1. Scoping Investigation of Diffusion Bonding for NGNP Process Application Heat Exchangers,2010

2. AWS A3.0 Terms and Definitions;American Welding Society (AWS),1969

3. Fundamentals of Diffusion Bonding;American Society for Testing and Materials (ASTM),1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3