Concurrent Design Optimization and Calibration-Based Validation Using Local Domains Sized by Bootstrapping

Author:

Drignei Dorin1,Mourelatos Zissimos P.2,Pandey Vijitashwa2,Kokkolaras Michael3

Affiliation:

1. Mathematics and Statistics Department, Oakland University, Rochester, MI 48309

2. Mechanical Engineering Department, Oakland University, Rochester, MI 48309

3. Mechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109

Abstract

The design optimization process relies often on computational models for analysis or simulation. These models must be validated to quantify the expected accuracy of the obtained design solutions. It can be argued that validation of computational models in the entire design space is neither affordable nor required. In previous work, motivated by the fact that most numerical optimization algorithms generate a sequence of candidate designs, we proposed a new paradigm where design optimization and calibration-based model validation are performed concurrently in a sequence of variable-size local domains that are relatively small compared to the entire design space. A key element of this approach is how to account for variability in test data and model predictions in order to determine the size of the local domains at each stage of the sequential design optimization process. In this article, we discuss two alternative techniques for accomplishing this: parametric and nonparametric bootstrapping. The parametric bootstrapping assumes a Gaussian distribution for the error between test and model data and uses maximum likelihood estimation to calibrate the prediction model. The nonparametric bootstrapping does not rely on the Gaussian assumption providing; therefore, a more general way to size the local domains for applications where distributional assumptions are difficult to verify, or not met at all. If distribution assumptions are met, parametric methods are preferable over nonparametric methods. We use a validation literature benchmark problem to demonstrate the application of the two techniques. Which technique to use depends on whether the Gaussian distribution assumption is appropriate based on available information.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference22 articles.

1. Terminology for Model Credibility;Schlesinger;Simulation

2. Verification and Validation of Simulation Models;Sargent

3. Bayesian Calibration of Computer Models;Kennedy;J. R. Stat. Soc. Ser. B (Stat. Methodol.)

4. Verification, Validation, and Predictive Capability in Computational Engineering and Physics;Oberkampf;Appl. Mech. Rev.

5. Computer Model Validation With Functional Output;Bayarri;Ann. Stat.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3