Blade Vibration Stress Determination Method Based on Blade Tip Timing Simulator and Finite Element Method

Author:

Zhang Xiaojie1,Wang Yanrong1,Jiang Xianghua1,Gao Shimin1

Affiliation:

1. School of Energy and Power Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China

Abstract

Abstract Blade tip timing (BTT) measurement technology is more widely used to determine the vibrational stress of rotating blades and play an important role for blade service life prediction. The dynamic blade displacements can be measured by tip timing sensors, and then be converted to blade stress by the modal shape information from finite element method (FEM) analysis. However, there are always two uncertainties between the measured displacements by BTT and the modal shape by FEM analysis. First, the effective positions detected by sensors may shift from where they expected due to the deformation of the blade. This deviation may yield calibration factors with deceptions, which will present an inaccurate correlation for the blade stress level and the tip displacement. Second, when vibrating, blade tip would actually oscillate around the equilibrium position both in circumferential and axial direction, while the sensors can only detect the movements along the circumference direction and neglect the other. This causes the measured displacements to be different from the actual displacements. To deal with these two problems, a novel method based on the vibration amplitudes of blade tip along axial direction is proposed to identify the effective detected position. The vibration stress of the whole blade then can be determined by linking the modified displacements to the mode shape information from finite element (FE) predictions. This method is validated by a numerical BTT simulator, which is trying to simulate the actual testing process of BTT measurement. Both synchronous and asynchronous vibrations are discussed to illustrate the applicability of this method. Moreover, sensitivity analysis is performed to identify the uncertainties from the vibration amplitude and mode shape inaccuracies. Results demonstrate the great potential of the method for vibration stress determination.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

1. High-Speed-Turbocharger Blade Vibration Measurement;Exp. Mech.,1967

2. A Review of Analysis Techniques for Blade Tip-Timing Measurements,1997

3. On the Influence of Strain Gauge Instrumentation on Blade Vibrations of Integral Blisk Compressor Rotors Applying a Discrete Model,2009

4. Blade Tip Timing and Strain Gauge Correlation on Compressor Blades;Proc. Inst. Mech. Eng., Part G,2008

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3