Turbulent Heat Transfer Downstream of a Contraction-Related, Forward-Facing Step in a Duct

Author:

Garcia A.1,Sparrow E. M.1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

Experiments were performed to investigate the axial distribution of the heat transfer coefficient downstream of an abrupt contraction in a flat rectangular duct. The contraction was created by the presence of a forward-facing step in one of the walls of the duct. The flow arriving at the step was hydrodynamically developed and isothermal. In the contracted duct, the duct wall that constituted the continuation of the step was maintained at a uniform temperature different from that of the entering flow, while the other walls were adiabatic. During the course of the experiments, the Reynolds number of the flow in the contracted duct ranged from 4000 to 24,000, while the ratio of the post-contraction to the precontraction duct heights took on values of 1 (no contraction), 0.8, 0.6, and 0.4. In the presence of the contraction, the axial distribution of the Sherwood number increased at first, attained a maximum, and then decreased monotonically to a fully developed value. In contrast, the no-contraction Sherwood number decreased monotonically and subsequently became fully developed. At a given Reynolds number, the peak Sherwood number for the contraction case was virtually independent of the contraction ratio and exceeded the largest measured Sherwood number for the no-contraction case by about a factor of two.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3