Fluid Motion and Heat Transfer of a High-Viscosity Fluid in a Rectangular Tank on a Ship With Oscillating Motion

Author:

Akagi S.1,Uchida K.2

Affiliation:

1. Department of Mechanical Engineering, Osaka University, Suita, Osaka, Japan

2. Matsushita Electric Co. Ltd., Kadoma, Osaka, Japan

Abstract

Fluid motion and heat transfer of a high-viscosity fluid contained in a two-dimensional rectangular ship’s tank subjected to oscillating motion are investigated by a finite difference technique. The study is motivated by the thermal design of the heating system of oil tanks on a tanker which is moving in a wavy sea. The bottom of the tank is heated and its side walls are cooled. The motion of the tank is assumed to be a simple harmonic rolling motion. The isotherms and flow velocity vectors are determined by numerical solutions of the basic equations describing the convection flows in a tank with oscillating motion. The heat transfer rates to the tank walls are predicted. The influence of the frequency of the oscillating motion on the heat transfer rate is examined.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-level Coil Bundle for Efficient Cargo Tank Heating;Journal of Marine Science and Application;2021-08-12

2. Vertical arrangement of coils for efficient cargo tank heating;International Journal of Naval Architecture and Ocean Engineering;2019-07

3. Report from experiments on heat transfer by forced vibrations of exchangers;Heat and Mass Transfer;1997-08-19

4. A LITERATURE SURVEY ON NUMERICAL HEAT TRANSFER (1986-1987);Numerical Heat Transfer, Part A: Applications;1989-02-01

5. Heat transfer—a review of 1987 literature;International Journal of Heat and Mass Transfer;1988-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3