Photovoltaic Cells Based on GaSb and Ge for Solar and Thermophotovoltaic Applications

Author:

Khvostikov V. P.1,Khvostikova O. A.1,Gazaryan P. Y.1,Sorokina S. V.1,Potapovich N. S.1,Malevskaya A. V.1,Kaluzhniy N. A.1,Shvarts M. Z.1,Andreev V. M.1

Affiliation:

1. Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, St. Petersburg 194021, Russia

Abstract

In the present work, high efficient photovoltaic (PV) cells based on gallium antimonide have been developed and fabricated with the use of the liquid phase epitaxy (LPE) and diffusion from the gas phase techniques. They are intended for conversion of the infrared (IR) part of the solar spectrum into electricity by tandems of mechanically stacked cells and for conversion of the thermal radiation of emitters heated by the sunlight. On the ground of investigation of the LPE temperature regimes and the tellurium doping effect, GaSb PV cells have been fabricated with the efficiency of 6% at the concentration of 300 suns behind the single-junction GaAs top cell and of 5.6% at the same sunlight concentration of the cells behind the dual-junction GaInP∕GaAs structure, the substrate thickness being 100μm (the efficiency of PV cells was calculated for AM1.5D Low AOD spectrum, 1000W∕m2). The rated efficiency of conversion of solar powered tungsten emitter radiation by PV cells based on gallium antimonide in a thermophotovoltaic (TPV) module appeared to be about 19%. Photovoltaic cells based on germanium with a wide-gap GaAs window grown by LPE or metalorganic chemical vapor deposition and with a p-n junction formed by means of the zinc diffusion from the gas phase have been fabricated. Ge based PV cells without a wide-gap GaAs window had the efficiency of up to 8.6% at a concentration of 150 suns. The efficiency of Ge based cells with a wide-gap GaAs window was 10.9% at the concentration of 150 suns. 4.3% efficiency Ge cells behind a single-junction GaAs top cell at the concentration of 400 suns have been also obtained. The maximum rated conversion efficiency of Ge PV cells appeared to be about 12% in the case of conversion of the tungsten emitter thermal radiation. These efficiency values for Ge based cells are among the highest.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference22 articles.

1. Over 35% Efficient GaAs∕GaSb Tandem Solar Cells;Fraas;IEEE Trans. Electron Devices

2. Mechanically Stacked Concentrator Tandem Solar Cells;Andreev

3. III-V Compounds for Solar Sell Applications;Bett;Appl. Phys. A

4. TPV Tube Generators for Apartment Building and Industrial Furnace Applications;Fraas;AIP Conf. Proc.

5. Thermophotovoltaic Converters With Solar Powered High Temperature Emitters;Andreev

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3