Boiling Visualization of Two Adjacent Impinging Jets on Hot Steel Plate

Author:

Lee Jungho1,Sohn Sangho1,Lee Sang Gun2

Affiliation:

1. Department of Extreme Thermal Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Korea

2. School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Korea

Abstract

The simultaneous measurement between the boiling visualization and the boiling heat transfer characteristics by two adjacent impinging jets on hot steel plate was made by the experimental technique that has a function of high-temperature flat-plate heat flux gauge. The 22 K-type thermocouples were installed at 1 mm below the surface of flat-plate heat flux gauge. The 2-D inverse heat conduction was formulated to solve the surface temperature and heat flux. The boiling visualization was synchronized with a 4K video camera which was meaningful to understand complex boiling heat transfer phenomena. The heat flux gauge was uniformly heated up to 900°C by induction heating. The successive boiling images show where the nucleate boiling starts to occur on hot surface and the film boiling turns to be collapsed. The measured surface temperature and heat flux distribution agrees well with the corresponding boiling visualization: While heat transfer at the stagnation point shows a maximum heat flux, the interaction between two adjacent impinging jets exhibits a relative high heat flux and a steep temperature gradient until the end of boiling heat transfer at which single-phase convection occurs near 200°C.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-steady front in quench subcooled-jet impingement boiling: Experiment and analysis;International Journal of Heat and Mass Transfer;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3