Hierarchical Multi-Timescale Energy Management for Hybrid-Electric Aircraft

Author:

Wang Wenqing1,Koeln Justin P.1

Affiliation:

1. University of Texas at Dallas

Abstract

Abstract Hybrid-electric aircraft represent an important step in the transition from conventional fuel-based propulsion to fully-electric aircraft. For hybrid power systems, overall aircraft performance and efficiency highly depend on the coordination of the fuel and electrical systems and the ability to effectively control state and input trajectories at the limits of safe operation. In such a safety-critical application, the chosen control strategy must ensure the closed-loop system adheres to these operational limits. While hierarchical Model Predictive Control (MPC) has proven to be a computationally efficient approach to coordinated control of complex systems across multiple timescales, most formulations are not supported by theoretical guarantees of actuator and state constraint satisfaction. To provide guaranteed constraint satisfaction, this paper presents set-based hierarchical MPC of a 16 state hybrid-electric aircraft power system. Within the proposed two-level vertical hierarchy, the long-term control decisions of the upper-level controller and the short-term control decisions of the lower-level controller are coordinated through the use of waysets. Simulation results show the benefits of this coordination in the context of hybrid-electric aircraft performance and demonstrate the practicality of applying set-based hierarchical MPC to complex multi-timescale systems.

Publisher

American Society of Mechanical Engineers

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Switched Moving Boundary Modeling of Phase Change Thermal Energy Storage Systems;2023 IEEE Conference on Control Technology and Applications (CCTA);2023-08-16

2. Lifted Graph-based Modeling for Linear Predictive Control of Nonlinear Energy Systems;2023 IEEE Conference on Control Technology and Applications (CCTA);2023-08-16

3. Variable Sampling MPC via Differentiable Time-Warping Function;2023 American Control Conference (ACC);2023-05-31

4. Hierarchical Predictive Control of an Unmanned Aerial Vehicle Integrated Power, Propulsion, and Thermal Management System;IEEE Transactions on Control Systems Technology;2023-05

5. Optimal Load and Energy Management of Aircraft Microgrids Using Multi-Objective Model Predictive Control;Sustainability;2021-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3