Combined Trajectory Planning and Tracking for Autonomous Vehicles on Deformable Terrains

Author:

Dallas James1,Weng Yifan1,Ersal Tulga1

Affiliation:

1. University of Michigan

Abstract

Abstract In this work, a novel combined trajectory planner and tracking controller is developed for autonomous vehicles operating on off-road deformable terrains. Common approaches to trajectory planning and tracking often rely on model-dependent schemes, which utilize a simplified model to predict the impact of control inputs to future vehicle response. However, in an off-road context and especially on deformable terrains, accurately modeling the vehicle response for predictive purposes can be challenging due to the complexity of the tire-terrain interaction and limitations of state-of-the-art terramechanics models in terms of operating conditions, computation time, and continuous differentiability. To address this challenge and improve vehicle safety and performance through more accurate prediction of the plant response, in this paper, a nonlinear model predictive control framework is presented that accounts for terrain deformability explicitly using a neural network terramechanics model for deformable terrains. The utility of the proposed scheme is demonstrated on high fidelity simulations for a notional lightweight military vehicle on soft soil. It is shown that the neural network based controller can outperform a baseline Pacejka model based scheme by improving on performance metrics associated with the cost function. In more severe maneuvers, the neural network based controller can achieve sufficient fidelity as compared to the plant to complete maneuvers that lead to failure for the Pacejka based controller. Finally, it is demonstrated that the proposed framework is conducive to real-time implementability.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3