Kriging Approach Dedicated to Represent Hydrodynamic Bearings

Author:

Silva Barbosa Jefferson1,Campanine Sicchieri Leonardo1,Dourado Arinan De Piemonte2,Cavalini Aldemir Ap1,Steffen Valder1

Affiliation:

1. LMEst—Structural Mechanics Laboratory, School of Mechanical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG 38408-196, Brazil

2. PML—Probabilistic Mechanic Laboratory, University of Central Florida, 12760 Pegasus Drive, Engineering 1, Room 337, Orlando, FL 32816

Abstract

Abstract The mathematical modeling of journal bearings has advanced significantly since the Reynolds equation was first proposed. Advances in the processing capacity of computers and numerical techniques led to multiphysical models that are able to describe the behavior of hydrodynamic bearings. However, many researchers prefer to apply simple models of these components in rotor-bearing analyses due to the computational effort that complex models require. Surrogate modeling techniques are statistical procedures that can be applied to represent complex models. In this work, Kriging models are formulated to substitute the thermohydrodynamic (THD) models of three different bearings found in a Francis hydropower unit, namely, a cylindrical journal (CJ) bearing, a tilting-pad journal (TPJ) bearing, and a tilting-pad thrust (TPT) bearing. The results determined by using the proposed approach reveal that Kriging models can be satisfactorily used as surrogate THD models of hydrodynamic bearings.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3