Using Bayesian Analysis to Quantify Uncertainty in Radiometer Measurements

Author:

Spinti Jennifer P.1,Smith Sean T.1,Smith Philip J.2,Harding N. Stanley3,Scheib Kaitlyn1,Draper Teri S.1

Affiliation:

1. Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112

2. Director of Carbon Capture Multidisciplinary Simulation Center, Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112

3. Institute for Clean and Secure Energy, University of Utah, Salt Lake City, UT 84112

Abstract

Abstract We apply Bayesian inference to instrument calibration and experimental-data uncertainty analysis for the specific application of measuring radiative intensity with a narrow-angle radiometer. We develop a physics-based instrument model that describes temporally varying radiative intensity, the indirectly measured quantity of interest, as a function of scenario and model parameters. We identify a set of five uncertain parameters, find their probability distributions (the posterior or inverse problem) given the calibration data by applying Bayes' Theorem, and employ a local linearization to marginalize the nuisance parameters resulting from errors-in-variables. We then apply the instrument model to a new scenario that is the intended use of the instrument, a 1.5 MW coal-fired furnace. Unlike standard error propagation, this Bayesian method infers values for the five uncertain parameters by sampling from the posterior distribution and then computing the intensity with quantifiable uncertainty at the point of a new, in situ furnace measurement (the posterior predictive or forward problem). Given the instrument-model context of this analysis, the propagated uncertainty provides a significant proportion of the measurement error for each in situ furnace measurement. With this approach, we produce uncertainties at each temporal measurement of the radiative intensity in the furnace, successfully identifying temporal variations that were otherwise indistinguishable from measurement uncertainty.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference43 articles.

1. Techniques for Measurement of Heat Flux in Furnace Waterwalls of Boilers and Prediction of Heat Flux—A Review;Appl. Therm. Eng.,2016

2. Guide for Verification and Validation in Computational Solid Mechanics;ASME,2006

3. Bayesian Calibration - What, Why and How,2016

4. Real-Time Heat Flux Measurement Using Directional Flame Thermometer;Appl. Therm. Eng.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3