Wall-Modeled Large-Eddy Simulations of Flows With Curvature and Mild Separation

Author:

Radhakrishnan Senthilkumaran1,Piomelli Ugo1,Keating Anthony1

Affiliation:

1. University of Maryland, College Park, MD 20742

Abstract

The performance of wall-modeled large-eddy simulation (WMLES) based on hybrid models, in which the inner region is modeled by Reynolds-averaged Navier–Stokes (RANS) equation and the outer region is resolved by large-eddy simulation (LES), can make the application of LES attainable at high Reynolds numbers. In previous work by various authors, it was found that in most cases a buffer region exists between the RANS and LES zones, in which the velocity gradient is too high; this leads to an inaccurate prediction of the skin-friction coefficient. Artificially perturbing the RANS∕LES interface has been demonstrated to be effective in removing the buffer region. In this work, WMLES has been performed with stochastic forcing at the interface, following the previous work by our group on two nonequilibrium complex flows. From the two flows studied, we conclude that the application of stochastic forcing results in improvements in the prediction of the skin-friction coefficient in the equilibrium regions of these flows, a better agreement with the experiments of the Reynolds stresses in the adverse pressure gradient and the recovery region, and a good agreement of the mean velocity field with experiments in the separation region. Some limitations of this method, especially in terms of CPU requirements, will be discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Reference36 articles.

1. Computational Aerodynamics Development and Outlook;Chapman;AIAA J.

2. The Potential and Limitations of Direct and Large Eddy Simulations;Reynolds

3. Strategies for Turbulence Modelling and Simulations;Spalart;Int. J. Heat Fluid Flow

4. Wall-Layer Models for Large-Eddy Simulations;Piomelli;Annu. Rev. Fluid Mech.

5. Piomelli, U. , 2008, “Wall-Layer Models for LES,” AIAA Paper No. 2008-0603.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

2. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

3. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

4. An overview of computational fluid dynamics and nuclear applications;Thermal-Hydraulics of Water Cooled Nuclear Reactors;2017

5. Large-eddy simulation of the interaction of wall jets with external stream;International Journal of Heat and Fluid Flow;2014-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3